

DPP - 4 (Circular Motion)

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/39
https://youtu.be/hsCDAjR-KWY
https://physicsaholics.com/note/notesDetalis/42

Q 1. When the string of a conical pendulum makes an angle of 45° with the vertical, its time is T_{1} when the string makes an angle of 60° with the vertical, its time period is T_{2} then T_{1}^{2} / T_{2}^{2} is:
(a) 2
(b) $\sqrt{2}$
(c) $\frac{1}{2}$
(d) none of these

Q 2. A sphere of mass 200 g is attached to an inextensible string of length 130 cm whose upper end is fixed to the ceiling. The sphere is made to describe a horizontal circle of radius 50 cm Calculate the periodic time of this conical pendulum and the tension in the string: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $2.2 \mathrm{sec}, 2.2 \mathrm{~N}$
(b) $2 \mathrm{sec}, 4 \mathrm{~N}$
(c) $1.6 \mathrm{sec}, 2.2 \mathrm{~N}$
(d) $2.5 \mathrm{sec}, 3 \mathrm{~N}$

Q 3. In a well of death, motor cycle rides round the inner wall of a hollow cylindrical chamber. If the radius of the cylindrieal chamber is 8 m . What would be minimum speed of the rider to prevent him from sliding down? $g=10 \mathrm{~m} / \mathrm{s}^{2}, \mu=0.2$)
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $20 \mathrm{~m} / \mathrm{s}$
(c) $30 \mathrm{~m} / \mathrm{s}$
(d) $40 \mathrm{~m} / \mathrm{s}$

Q 4. A person wants to drive on the vertical surface of a large cylindrical wooden well commonly known as death well in a circus. The radius of the well 2 meter, and the coefficient of friction between the tyers of the motorcycle and the wall of the well is 0.2 the minimum speed the motorcyclist must have in order to prevent slipping should be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(d) $25 \mathrm{~m} / \mathrm{s}$

Q 5. What will be maximum speed of a car on a curved road of radius 30 m . If the coefficient of friction between the tyres and the road is $0.4 ?\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $10.95 \mathrm{~m} / \mathrm{s}$
(b) $9.87 \mathrm{~m} / \mathrm{s}$
(c) $12.13 \mathrm{~m} / \mathrm{s}$
(d) $4.27 \mathrm{~m} / \mathrm{s}$

Q 6. A van moving with a speed of $108 \mathrm{~km} / \mathrm{h}$ on level road where coefficient of friction between tyres and rod is 0.5 . For the safe driving of van the minimum radius of curvature of the rod will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 80 m
(b) 40 m
(c) 180 m
(d) 20 m

Q 7. A car of mass 1000 kg negotiates a banked curve of radius 90 m on a frictionless road. If the banking angle is 45^{0} the speed of the car is: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $20 \mathrm{~m} / \mathrm{s}$
(c) $30 \mathrm{~m} / \mathrm{s}$
(d) $40 \mathrm{~m} / \mathrm{s}$

Q 8. A cyclist riding at a speed of $14 \sqrt{3} \mathrm{~m} / \mathrm{s}$ takes a turn around a circular road of radius $20 \sqrt{3} \mathrm{~m}$. What is his inclination with horizontal? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 30°
(b) 45^{0}
(c) 60°
(d) 37^{0}

Q 9. A turn of radius 20 m is banked for the vehicles going at a speed of $36 \mathrm{~km} / \mathrm{h}$. If the coefficient of static friction between the road and the tyre is 0.4 , what are the possible speeds of a vehicle so that it neither slips down nor skids up? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $4.08 \mathrm{~m} / \mathrm{s} \leq V \leq 15 \mathrm{~m} / \mathrm{s}$
(b) $3.01 \mathrm{~m} / \mathrm{s} \leq V \leq 15 \mathrm{~m} / \mathrm{s}$
(c) $4.08 \mathrm{~m} / \mathrm{s} \leq V \leq 12 \mathrm{~m} / \mathrm{s}$
(d) $3.01 \mathrm{~m} / \mathrm{s} \leq V \leq 12 \mathrm{~m} / \mathrm{s}$

Q 10. A curve in a road forms an arc of radius 800 m . If the road is 19.6 m wide and outer edge is 1 m higher than the inner edge, calculate the speed for which it is banked; $(g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $12.7 \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(d) $23.1 \mathrm{~m} / \mathrm{s}$

Q 11. A circular road of radius 1000 m has banking angle 45°. The maximum safe speed of a car having mass 2000 kg will be, if the coefficient of friction between tyre and road is 0.5: $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $172 \mathrm{~m} / \mathrm{s}$
(b) $124 \mathrm{~m} / \mathrm{s}$
(c) $99 \mathrm{~m} / \mathrm{s}$
(d) $86 \mathrm{~m} / \mathrm{s}$

Q 12. Find the maximum velocity for skidding for a car moved on a circular track of radius 100 m . The coefficient offriction between the road and tyre is $0.2:\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $0.14 \mathrm{~m} / \mathrm{s}$
(b) $140 \mathrm{~m} / \mathrm{s}$
(c) $1.4 \mathrm{~m} / \mathrm{s}$
(d) $14 \mathrm{~m} / \mathrm{s}$

Q 13. A point mass m is suspended from a light thread of length l, fixed at O, is whirled in a horizontal circle at constant speed as shown. From your point of view, stationary with respect to the mass, the forces on the mass are:

(a)

(b)

(c)

(d)

Answer Key

Q. 1	b	Q. 2	a	Q. 3	b	Q. 4	a	Q. 5	a
Q.6	c	Q. 7	c	Q. 8	a	Q. 9	a	$\mathbf{Q . 1 0}$	c
Q.11	a	Q.12	d	Q.13	c				

